d = [tex] \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex] Plug your coordinates into the formula d = [tex] \sqrt{(29 - 43)^2 + (-3 -(-15))^2} [/tex] Simplify the double negative d = [tex] \sqrt{(29 - 43)^2 + (-3 + 15)^2} [/tex] Subtract and Add inside the parentheses d = [tex] \sqrt{(-14)^2 + (12)^2} [/tex] Simplify the exponents d = [tex] \sqrt{196 + 144} [/tex] Add d = [tex] \sqrt{340} [/tex] d ≈ 18.493