Respuesta :
Let
x-------> Orville speed
y-------> Randy speed
t--------> Randy time
we know that
speed=distance /time
Orville traveled at a speed that was twice as fast as randy
so
x=2y------> equation 1
speed Orville
x=240/(t-1)------> equation 2
speed Randy
y=150/t------> equation 3
substitute equation 1 in equation 2
2y=240/(t-1)------> y=120/(t-1)----------> equation 4
equate equation 3 and equation 4
150/t=120/(t-1)------> 150*(t-1)=120*t----> 150*t-120*t=150
30*t=150-----> t=5 hours
Orville speed and time
x=240/(t-1)-----> 240/(4)----> 60 miles/hour
Orville speed is 60 miles/hour
Orville time is (t-1)----> 5-1-----> 4 hour
Randy speed and time
y=150/t-----> 150/5----> 30 miles/hour
Randy speed is 30 miles/hour
Randy time is t-----> 5 hours
the answers are
a) Orville speed is 60 miles/hour
b) Orville time is 4 hours
c) Randy speed is 30 miles/hour
d) Randy time is 5 hours
x-------> Orville speed
y-------> Randy speed
t--------> Randy time
we know that
speed=distance /time
Orville traveled at a speed that was twice as fast as randy
so
x=2y------> equation 1
speed Orville
x=240/(t-1)------> equation 2
speed Randy
y=150/t------> equation 3
substitute equation 1 in equation 2
2y=240/(t-1)------> y=120/(t-1)----------> equation 4
equate equation 3 and equation 4
150/t=120/(t-1)------> 150*(t-1)=120*t----> 150*t-120*t=150
30*t=150-----> t=5 hours
Orville speed and time
x=240/(t-1)-----> 240/(4)----> 60 miles/hour
Orville speed is 60 miles/hour
Orville time is (t-1)----> 5-1-----> 4 hour
Randy speed and time
y=150/t-----> 150/5----> 30 miles/hour
Randy speed is 30 miles/hour
Randy time is t-----> 5 hours
the answers are
a) Orville speed is 60 miles/hour
b) Orville time is 4 hours
c) Randy speed is 30 miles/hour
d) Randy time is 5 hours